Revision 4 (Solutions)

Year 11 Examination

Question/Answer Booklet

MATHEMATICS SPECIALIST UNITS 1 AND 2 Section Two: Calculator-assumed

Student Number:

In figures

In words

Teacher name

Materials required/recommended for this section

To be provided by the supervisor This Question/Answer Booklet Formula Sheet

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters

Special items: nil

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

This section has eight (8) questions. Answer all questions. Write your answers in the spaces provided.

2

Working time: 60 minutes.

CALCULATOR-ASSUMED

Question 1

ABCDEF is a regular hexagon. The midpoint of side DE is M. (a)

Let $\mathbf{a} = \overrightarrow{AB}$ and $\mathbf{b} = \overrightarrow{AF}$. Express each of the following in terms of \mathbf{a} and \mathbf{b} .

(i)	\overrightarrow{BC} .		(1 mark)
		Solution	
		$\overrightarrow{BC} = \mathbf{a} + \mathbf{b}$	
		Specific behaviours	
		✓ states correct expression	
		· ·	
(ii)	\overrightarrow{AE} .		(1 mark)

Solution
$\overrightarrow{AE} = \overrightarrow{AF} + \overrightarrow{FE} = \mathbf{b} + (\mathbf{a} + \mathbf{b}) = \mathbf{a} + 2\mathbf{b}$
Specific behaviours
✓ states correct expression

(iii)	\overrightarrow{MB} .
-------	-------------------------

Solution
$\overrightarrow{MB} = \overrightarrow{ME} + \overrightarrow{BE} = -0.5\mathbf{a} - 2\mathbf{b}$
Specific behaviours
✓ states correct expression

65% (58 Marks)

(7 marks)

(1 mark)

(1 mark)

(b) Three forces, F_1 , F_2 and F_3 act on a body that remains in equilibrium.

 F_1 has a magnitude of 400 N. The angle between the directions of F_1 and F_2 is 150°, between F_1 and F_3 is 135° and between F_2 and F_3 is 75°.

Determine the magnitudes of F_2 and F_3 , rounding your answers to the nearest whole number. (4 marks)

 \checkmark solves for x

 \checkmark solves for y

See next page

CALCULATOR-ASSUMED

(a) A number is to be formed by randomly selecting three **different** digits from those in the number 93265. Determine how many different numbers

4

(i) start with an odd digit.

3 × 4 × 3 = 36 numbers Specific behaviours ✓ calculates correct number

Solution

(ii) end with an even digit.

Solution
$2 \times 4 \times 3 = 24$ numbers
Specific behaviours
✓ calculates correct number

(iii) start with an odd digit or end in an even digit.

 Solution

 $3 \times 2 \times 3 = 18$ numbers start with an odd digit and end in an even digit

 36 + 24 - 18 = 42 numbers

 Specific behaviours

 \checkmark calculates set intersection

 \checkmark calculates correct number for act union

- (b) A computer user has forgotten their six character, case-sensitive password, but know that they always use a permutation of F, F, 1, 9, 9, and 9 their initials and the year they were born. Determine how many passwords are possible if
 - (i) the F's must both be uppercase.

Solution $\frac{6!}{2!\times 3!} = \frac{6\times 5\times 4}{2} = 60$ passwords

Specific behaviours

✓ shows correct method

Solution
FF can be replaced with Ff, fF or ff, so $4 \times 60 = 240$ passwords
Specific behaviours
✓ calculates correct number

(2 marks)

(1 mark)

(1 mark)

(1 mark)

(2 marks)

SPECIALIST UNITS 1 AND 2

(7 marks)

Question 3

(a) Triangle *BCE* is such that *B*, *C* and *E* lie on a circle with centre *O* and radius 29 cm. Diameter *AD* and chord *CE* intersect at *F*, so that DF = 8.5 cm and EF = 25.5 cm. Determine the lengths *OF*, *CF* and *BC*. (5 marks)

Solution		
OF = 29 - 8.5 = 20.5 cm		
$CF \times EF = DF \times AF \Rightarrow CF = 8.5 \times \frac{29+20.5}{25.5} = 16.5 \text{ cm}$		
ΔBCE is right-angled $\Rightarrow BC = \sqrt{(29 + 29)^2 - (16.5 + 25.5)^2} = 40$ cm		
Specific behaviours		
✓ calculates <i>OF</i>		
✓ uses intersecting chord theorem		
\checkmark calculates CF		
✓ uses angle in semicircle		
\checkmark calculates <i>BC</i>		

(b) In the diagram below, points *B*, *C* and *D* lie on a circle with centre *O*. The tangents to the circle at *B* and *D* intersect at point *A*. If $\angle BAD = x$, prove that $\angle BCD = 90^{\circ} - \frac{x}{2}$. (3 marks)

Solution

In quadrilateral *ABOD*, $\angle ABO = \angle ADO = 90^{\circ}$ (tangent-radius angle) $\angle BOD = 360 - 90 - 90 - x = 180 - x$ (angle sum in quadrilateral) $\angle BCD = \frac{1}{2} \times \angle BOD = \frac{1}{2} \times 180 - x = 90^{\circ} - \frac{x}{2}$ (angle at centre twice that on circ.) **Specific behaviours** \checkmark adds radii to diagram noting right-angles

✓ determines ∠BOD with reason

 \checkmark determines $\angle RCD$ with reason

5

CALCULATOR-ASSUMED

SPECIALIST UNITS 1 AND 2

Question 4

(9 marks)

Transformation *A* is an anti-clockwise rotation about the origin of 90° and matrix $B = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.

(a) Represent transformation A as a 2×2 matrix.

(2 marks)

(b) Describe the transformation represented by matrix *B*. **Solution**

(2 marks)

A dilation parallel to x-axis of scale factor 2 and dilation parallel
to <i>y</i> -axis of scale factor 3.

Specific behaviours

 \checkmark two dilations

 \checkmark fully qualifies both dilations with directions and scale factors

(c) Determine the coordinates of the point P(-15, -11) following transformation A and then transformation B. (2 marks)

6

CALCULATOR-ASSUMED

7

(d) Following transformation *B* and then transformation *A*, point *Q* is transformed to point Q'(12,7).

Determine the single matrix that will transform Q' back to Q and hence determine the coordinates of point Q. (3 marks)

 \checkmark determines inverse of *B* and inverse of *A*

 \checkmark determines single matrix

 \cdot dotorminos coordinatos of 0

Solution Using CAS, angle is 34.1°

Specific behaviours ✓ states correct angle.

- ✓ determines at least one perpendicular vector
- ✓ states both required vectors

(b) If
$$\overrightarrow{AB} = (3, 4)$$
 and $\overrightarrow{AC} = (-2, 1)$, determine

the component of \overrightarrow{AB} parallel to \overrightarrow{AC} . (i)

Vector projection of
$$\overrightarrow{AB}$$
 on \overrightarrow{AC} :

$$\frac{(3,4) \cdot (-2,1)}{(-2,1) \cdot (-2,1)} \times (-2,1) = (0.8,-0.4)$$
Specific behaviours

substitutes correctly into vector projection formula

Solution

the component of \overrightarrow{AB} perpendicular to \overrightarrow{AC} . (ii)

Solution Let component be r. $\mathbf{r} + (0.8, -0.4) = \overrightarrow{AB}$ $\mathbf{r} = (2.2, 4.4)$ **Specific behaviours** ✓ shows use of vector addition / avaluataa aamaaaant

Question 5

(ii)

(a)

(1 mark)

(2 marks)

(2 marks)

two vectors that are perpendicular to q and have the same magnitude as p.

(3 marks)

Solution Magnitude of required vectors are $|\mathbf{p}| = 145$ Unit vectors \perp to **q** are $\pm \frac{1}{29}(21, 20)$ Required vectors are $\pm \frac{145}{29} \times (21, 20) = (105, 100)$ and (-105, -100)Specific behaviours \checkmark calculates magnitudes of p and q

8

Consider the vectors $\mathbf{p} = (24, -143)$ and $\mathbf{q} = (20, -21)$. Determine

SPECIALIST UNITS 1 AND 2

Question 6

(7 marks)

(a) The work done, in joules, by a force F Newtons in changing the displacement of an object s metres is given by the scalar product of F and s. Calculate the work done when a force of 750 N moves an object a distance of 85 cm at an angle of 5° to the force.

(2 marks)

Solution
$750 \times 0.85 \times \cos 5^{\circ} = 635.1 \text{ N}$
Specific behaviours
✓ substitutes correct values into scalar product
√evaluates work done

(b) A drone flies with a constant velocity and height above level ground, over which a wind blows from the north west at 3.5 metres per second. After 15 seconds, the drone reaches a point 85 metres on a bearing of 020° from where it was launched. Determine the velocity of the drone, giving its magnitude to two decimal places and bearing to the nearest degree. (5 marks)

Solution	
a 85 20°	
Wind component is $15 \times 3.5 = 52.5$ m	
$a^2 = 52.5^2 + 85^2 - 2(52.5)(85)\cos 115 \Rightarrow a = 117.2737$	
Speed of drone is $117.2737 \div 15 = 7.82$ m/s (2dp).	
$\frac{52.5}{\sin x} = \frac{106.4211}{\sin 115} \Rightarrow x = 24^{\circ}$ and so bearing is $020 - 24 = 356^{\circ}$.	
Specific behaviours	
✓ sketch displacement vector diagram	
 ✓ uses cosine rule to determine drone displacement ✓ calculates drone speed ✓ uses sine rule to determine angle ✓ determines bearing 	

9

CALCULATOR-ASSUMED

Question 7

(a) A high school has 5 male and 9 female volunteers from which to choose a debating team of 5 students. Determine the number of different teams that can be formed if

10

(i) there are no special requirements.

(ii) there must be a captain and a vice-captain.

✓ evaluates correct number

(iii) there must be more females than males, but at least one male. (2 marks)

Solution
$$\binom{5}{1} \times \binom{9}{4} + \binom{5}{2} \times \binom{9}{3} = 1470$$
 teamsSpecific behaviours✓ shows a suitable method

Determine how many **different** numbers must be selected from the first 25 positive (b) integers to be certain that at least one of them will be twice the other. (3 marks)

Solution	
Partition integers into pigeonholes, where double included if possible:	
{1, 2}, {3, 6}, {4, 8}, {5, 10}, {7, 14}, {9, 18}, {11, 22}, {12, 24},	
{13}, {15}, {16}, {17}, {19}, {20}, {21}, {23}, {25}.	
NB Other partitions possible.	
There are 17 partitions (pigeonholes) and so 18 numbers (pigeons)	
are required to ensure that at least one will be twice the other.	
Specific behaviours	
✓ partitions most integers	
✓ systematically partitions all integers	
V annica nizaanhala principla ta zat aarraat number	

shala principle to get correct number

(8 marks)

(1 mark)

(2 marks)

Question 8

In the diagram below, the tangents from point *A* touch the circle at *B* and *F*. Point *E* lies on the major arc *BF* and *D* lies on *BF* so that $DE \perp BF$. Points *C* and *G* lie on *AB* and *AF* extended respectively such that $EC \perp AC$ and $EG \perp AG$.

(a) Show that $\triangle BCE$ and $\triangle FDE$ are similar.

Solution
$\angle CBE = \angle DFE$ (alternate segment theorem)
$\angle BCE = \angle FDE$ (both right)
Hence $\Delta BCE \sim \Delta FDE$ (AA)
- ()
Specific behaviours
\checkmark shows one pair of angles equal with reason
\checkmark shows second pair of angles equal with reason

Shows second pair of angles equivient that similar

(b) Show that $DE^2 = CE \times GE$.

Solution $\angle GFE = \angle DBE$ (alternate segment theorem) $\angle BDE = \angle FGE$ (both right)Hence $\triangle BDE \sim \triangle FGE$ (AA)So ratio of sides is $\frac{DE}{GE} = \frac{BE}{FE}$ But ratio of sides from (a) is $\frac{CE}{DE} = \frac{BE}{FE} \Rightarrow \frac{CE}{DE} = \frac{DE}{GE} \Rightarrow DE^2 = CE \times GE$.Specific behaviours \checkmark realises second pair of similar triangles required \checkmark uses same reasoning from (a) to show $\triangle BDE \sim \triangle FGE$ \checkmark states ratio of corresponding sides for both pairs of triangles \checkmark uses common ratio to obtain result

(3 marks)

(4 marks)